
Advanced Algorithms October 7, 2024

Lecture 8: Approximation Algorithms using LPs and MWU
Notes by Ola Svensson and Mohamad Fakhouri1

In this lecture we do the following:

• We give a randomized approximation algorithm for the Set Cover problem

• We show that the integrality gap of the set cover LP is Ω(log n)

• We also start with the Multiplicative Weights Algorithm.

These notes are based on [1] and [2].

1 Set Cover via Randomized Rounding

Let us now apply the framework to the Set Cover problem. It can be seen as a generalization of the
vertex cover problem and its definition is as follows:

Definition 1 (Set Cover Problem) Given a universe U = {e1, e2, . . . en}, and a family of subsets
T = {S1, S2, . . . Sm} and a cost function c : T → R+, find a collection C of subsets of minimum cost
that cover all elements.

As for vertex cover, we start by giving an exact Integer LP formulation. For each i ∈ {1, . . .m},
define xi, which is 1 if Si ∈ C, and 0 otherwise. The objective function is

min

m∑
i=1

xi · c(Si)

and for each element e ∈ U , we add the constraint
∑

Si : e∈Si
xi ≥ 1. This ensures that each element

is covered by at least one set in C. And for each xi, we require that xi ∈ {0, 1} in the ILP. The LP
relaxation is then obtained by replacing the boolean constraints xi ∈ {0, 1} by xi ∈ [0, 1].
Now suppose that each element belongs to at most f sets. Then, as in your exercise on vertex cover

on k-uniform hypergraphs, we can do the following rounding: C = {Si : x
∗
i ≥ 1

f }. In each constraint,
there’s at least one x∗

i which is at least
1
f , so each constraint is satisfied. Using the same reasoning as in

the analysis of the vertex cover rounding, we can show that this approximation is within a factor of f .

1.1 A better approximation for Set Cover

If we introduce randomness and allow our algorithm to output non-feasible solutions with some small
probability, we can get much better results (in expectation).
We use the same LP as in the previous section, and will run the following algorithm:

1. Solve the LP to get an optimal solution x∗.

2. Choose some positive integer constant d (we will see later how d affects the guarantees we get).
Start with an empty result set C, and repeat step 3 d · ln(n) times.

3. For i = 1, . . .m, add set Si to the solution C with probability x∗
i , choosing independently for each

set.

Now let us analyze what guarantees we can get:
1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain

inconsistent notation, typos, and omit citations of relevant works.

1



Claim 2 The expected cost of all sets added in one execution of Step 3 is

m∑
i=1

x∗
i c(Si) = LPOPT

Proof

E[rounded cost] =
m∑
i=1

c(Si) Pr[Si is added] =
m∑
i=1

c(Si)x
∗
i = LPOPT

From this, we can immediately derive

Corollary 3 The expected cost of C after d · ln(n) executions of Step 3 is at most

d · ln(n) ·
m∑
i=1

c(Si)x
∗ ≤ d · ln(n) · LPOPT ≤ d · ln(n) ·OPT

Note that we have LPOPT ≤ OPT because LP is a relaxation of the original problem, so its optimum
can only be better.
That sounds good, but we should also worry about feasibility:

Claim 4 The probability that a constraint remains unsatisfied after a single execution of Step 3 is at
most 1

e .

Proof Suppose our constraint contains k variables, and let us write it as x1+x2+ · · ·+xk ≥ 1. Then,

Pr[constraint unsat.] = Pr[S1 not taken] . . .Pr[Sk not taken]

= (1− x∗
1) . . . (1− x∗

k)

≤ e−x∗
1 · ... · e−x∗

k (1)

= e−
∑k

i=1 x∗
i

≤ e−1 (2)

where (1) follows from the inequality 1− x ≤ e−x and (2) from the fact that
∑

i x
∗
i ≥ 1.

Claim 5 The output C is a feasible solution with probability at least 1− 1
nd−1 .

Proof Using claim 4, we find that the probability that a given constraint is unsatisfied after d · ln(n)
executions of step 3 is at most (

1
e

)d·ln(n)
=

1

nd

and by union-bound, the probability that there exists any unsatisfied constraint is at most

n · 1

nd
=

1

nd−1

Now we have an expected value for the cost, and also a bound on the probability that an infeasible
solution is output, but we still might have a bad correlation between the two: It could be that all feasible
outputs have a very high cost, and all infeasible outputs have a very low cost.
The following claim deals with that worry.

2



Claim 6 The algorithm outputs a feasible solution of cost at most 4d ln(n)OPT with probability greater
than 1

2 .

Proof Let µ be the expected cost, which is d ln(n) · OPT by corollary 3. We can upper-bound the
bad event that the actual cost is very high: By Markov’s inequality, we have Pr[cost > 4µ] ≤ 1

4 . The
other bad event that we have to upper bound is that the output is infeasible, and by claim 5, we know
that this happens with probability at most 1

n(d−1) ≤ 1
n . Now in the worst case, these two bad events are

completely disjoint, so the probability that no bad event happens is at least 1− 1
4 −

1
n , and if we suppose

that n is greater than 4, this probability is indeed greater than 1
2 .

We have thus designed a randomized O(log n)-approximation algorithm for the set cover problem.
We remark that the used framework has the following general advantage (compared to worst-case

guarantees): we can often get better per-instance guarantee than the general approximation factor:
Suppose we have an instance where LPOPT = 100, and our algorithm found a solution of cost 110. Since
we know that LPOPT ≤ OPT , we can say that our solution on this instance is at most 10% away from
the optimal solution for this instance.

2 Integrality gap of the set cover LP

Consider the following instance of the Set Cover problem. For an even integer d ≥ 1 let

U =

{
x ∈ {0, 1}d :

d∑
i=1

xi = d/2

}
,

i.e., the universe consists of all binary vectors of length d that have d/2 nonzeros. Let the collection F
contain m = d sets S1, . . . , Sm, defined by

Si = {x ∈ U : xi = 1}

for every i = 1, . . . ,m. All costs are 1.
We first give a feasible solution to the LP relaxation of Set Cover on the instance above with value

bounded by 2. The LP relaxation of the set cover problem is the following:

min
z

d∑
i=1

zi, st.:

∀i ∈ [d] : zi ∈ [0, 1]

∀x ∈ U :
∑

i:x∈Si

zi ≥ 1

A solution to this with value 2 is to set every variable zi to 2/d. That way
∑

i zi = 2 and all constraints
are satisfied: ∑

i:x∈Si

zi =
∑

i:xi=1

zi =
∑

i:xi=1

2/d =

n∑
i=1

2/d · xi = 1

Suppose we have any collection of d/2 sets F ′ ⊆ F . We can characterise F ′ as {Si : i ∈ I} for some
I ⊆ {1, . . . , d} with |I| = d/2. Let us then define the vector x∗ such that x∗

i = 0 for i ∈ I and x∗
i = 1

for i ̸∈ I. Then x∗ ∈ U but x∗ ̸∈ ∪F , thus proving that F does not cover U . In this set cover problem
the optimal integral solution is at least d/2+ 1, but the optimal fractional solution is at most 2. This is
an Ω(d) integrality gap. Since the size of the universe, |U | =

(
d

d/2

)
≤ 2d, this translates to an Ω(log |U |)

integrality gap.

3



3 The Multiplicative Weights Algorithm

This section is basically taken verbatim from the excellent lecture notes2 by Anupam Gupta available here
(together with a lot of other interesting information): https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-
f11/www/
Multiplicative weights is a retronym for the simple iterative rule that underlies modular, iterative

algorithms for solving LPs and SDPs (semidefinite programs)3. The Multiplicative Weights Algorithm
is known by diferent names in the various fields where it was (re)discovered. Check out the survey by
Arora, Hazan and Kale [3]; our discussion will be based on their treatment. Due to its broad appeal, we
will consider multiplicative weights in more generality than is needed for solving LPs and SDPs. In this
lecture, we’ll introduce some strategies for playing a prediction game.

3.1 Warmup: Prediction with Expert Advice

The following sequential game is played between an omniscient Adversary and an Aggregator who is
advised by N experts. Special cases of this game include predicting if it will rain tomorrow, or if the
stock market will go up or down.

Strategy 1 Prediction with Expert Advice
1: for t = 1 . . . T do
2: Each expert i ∈ [N ] advises either YES or NO
3: Aggregator predicts either YES or NO
4: Adversary, with knowledge of the expert advice and Aggregator’s prediction, decides the YES/NO
outcome.

5: Aggregator observes the outcome and suffers if his prediction was incorrect.
6: end for

Naturally, Aggregator wants to make as few mistakes as possible. Since the experts may be unhelpful
and the outcomes may be capricious, Aggregator can hope only for a relative performance guarantee.
In particular, Aggregator hopes to do as well as the best single expert in hindsight4. In order to do so,
Aggregator must track which experts are helpful. We will consider a few tracking strategies. Almost
every other aspect of the game - that advise is aggregated into a single value, that this value is binary,
and even that the game is sequential - is not relevant; we will generalize or eliminate these aspects.
If there is a perfect expert, then an obvious strategy is to dismiss experts who are not perfect. With

the remaining experts, take a majority vote. Whenever the Aggregator makes a mistake, at least half of
the remaining experts are dismissed, so Aggregator makes at most logN mistakes5. We can use the same
strategy even when there isn’t a perfect expert, if we restart after every expert has been eliminated. If
the best expert has made M mistakes by time T , then Aggregator has restarted at most M +1 times, so
it has made at most (M+1) · logN mistakes. This bound is rather poor since it depends multiplicatively
on M .

3.2 Fewer Mistakes with Weighted Majority

We may obtain an additive mistake bound by softening our strategy: instead of dismissing experts
who erred, discount their advice. This leads to the Weighted Majority Algorithm of Littlestone and
Warmuth [4]. Assign each expert i a weight w(1)

i initialized to 1. Then for every t, predict YES/NO
based on the weighted majority vote and halve the mistaken experts’ weights after observing the outcome.
The game strategy then becomes:
2This section corresponds to Lecture 16 in the course, which was scribed by Shiva Kaul
3See Lecture 17 in the course linked earlier
4The excess number of mistakes is called (external) regret
5We will use log to denote the binary logarithm

4



Strategy 2 Prediction with Weighted Majority

1: Initialize w(1) = (w
(1)
1 , . . . , w

(1)
N ) to be a vector of 1’s

2: for t = 1 . . . T do
3: Each expert i ∈ [N ] advises either YES or NO
4: Aggregator predicts either YES or NO based on a weighted majority vote using w(t)

5: Adversary, with knowledge of the expert advice and Aggregator’s prediction, decides the YES/NO
outcome.

6: Aggregator observes the outcome and for every mistaken expert i, set w(t+1)
i ← w

(t)
i /2

7: end for

Claim 7 For any sequence of outcomes, duration T , let MWM be the number of mistakes that the
Weighted Majority strategy makes, and Mi be the number of mistakes that expert i makes. Then

MWM ≤ 2.41 · (Mi + logN)

Proof Let

Φ(t) =
∑
i∈[N ]

w
(t)
i

be a ‘potential’ function. Observe that:

• By definition, we have Φ(1) = N

• Also by definition,
(
1
2

)Mi ≤ Φ(T+1)

• At any time τ when WM errs, at least half of the weight gets halved:

Φ(τ+1) ≤ 3

4
Φ(τ)

This implies

Φ(T+1) ≤
(
3

4

)MWM

Φ(1)

Combining these facts yields (
1

2

)Mi

≤
(
3

4

)MWM

N

Taking the base-2 logarithm of both sides,

−Mi ≤ logN + log

(
3

4

)
MWM

so

MWM ≤
1

log(4/3)︸ ︷︷ ︸
≈2.41

(Mi + logN)

The leading constant is a consequence of our arbitrary choice to halve the weights. We can optimize
ϵ in the update rule

w
(t+1)
i ← w

(t)
i /(1 + ϵ)

then using the WM strategy we may achieve

MWM ≤ 2(1 + ϵ)(Mi +O(logN/ϵ))

5



References

[1] David Leydier and Samuel Grütter: Scribes of Lecture 8 in Topics in TCS 2014.
http://theory.epfl.ch/courses/topicstcs/Lecture8.pdf

[2] Romain Edelmann & Florian Tramèr: Scribes of Lecture 10 in Topics in TCS 2014.
http://theory.epfl.ch/courses/topicstcs/Lecture10.pdf

[3] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta
algorithm and applications. Technical report, Princeton University, 2005. 16

[4] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. In FOCS, pages
256–261, 1989. 16.1.1

6


